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Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates
are based on the robust, noble-irrational rotational-transform surfaces, whose existence is
determined by an application of Greene’s residue criterion. A simple method to locate these surfaces
is described. Sequences of surfaces with rotational-transform converging to low order rationals
maximize the region of straight-field-line coordinates. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1640379#

I. INTRODUCTION

As toroidal magnetic field line flow, with non-vanishing
toroidal component, is a Hamiltonian system,1,2 all the pow-
erful and insightful tools valid for Hamiltonian systems may
be applied~see Refs. 3 and 4 for comprehensive discussions
of dynamical systems!. A particularly useful property is that,
if the system is integrable, then action-angle coordinates may
be constructed everywhere.5 The analog of action-angle co-
ordinates for magnetic field line flow is straight-field-line
coordinates. Such coordinates greatly simplify the dynamics.
Along a field line in an integrable system, the ‘‘action’’ co-
ordinate,c ~toroidal flux!, is constant and the ‘‘angle’’ coor-
dinate,a ~poloidal angle!, increases linearly with the ‘‘time’’
coordinate,z ~toroidal angle!, asa(z)5a01 i– (c)z, where
i– is the rotational-transform. As plasma dynamics is strongly
influenced by the confining magnetic field, it is not surpris-
ing that straight-field-line coordinates are widely used in
plasma physics, with the most common choice being Boozer
coordinates.6

Straight-field-line coordinates can only be constructed
on flux surfaces. For integrable fields, all the magnetic field
lines lie on flux surfaces. For a non-integrable field the situ-
ation is more complicated. A non-integrable field may be
considered as an integrable field plus a non-integrable per-
turbation and is the realistic case for plasma confinement
devices. Magnetic islands form at the rational rotational-
transform surfaces and chaotic trajectories emerge near un-
stable periodic orbits. In such regions, straight-field-line co-
ordinates cannot be constructed. Nonetheless, the usefulness
of straight-field-line coordinates is not completely lost. De-
pending on the magnitude of the perturbation, the
Kolmogorov–Arnold–Moser~KAM ! theorem7–9 shows that
flux surfaces with sufficiently irrational rotational-transform
survive perturbation. These flux surfaces are commonly
called KAM surfaces. If the integrability destroying pertur-
bation is small, then flux surfaces will exist almost every-
where.

The construction of straight-field-line coordinates be-
comes increasingly treacherous as the perturbation strength
increases. The existence of a given flux surface is fragile.
The irrational rotational-transform surfaces will disintegrate

into invariant Cantor sets~cantori! for strong perturbation
and the region occupied by chaotic field lines will increase.
Considering that both the rational and irrationals are dense in
the set of real numbers,10,11 the structure of the magnetic
field, at every level of detail, is a complex mixture of peri-
odic orbits, island chains, and chaotic trajectories inter-
spersed with invariant surfaces and cantori.

In the plasma physics community there are several com-
putational codes that consider the challenging problem of
describing plasma behavior in perturbed and chaotic mag-
netic fields.12–15 While it is not necessary to use straight-
field-line coordinates, it is helpful to be aware of the type of
behavior that chaotic magnetic fields exhibit.

This article will present a construction of straight-field-
line coordinates for nearly integrable fields containing mag-
netic islands, chaotic field lines, and invariant flux surfaces.
The coordinates are based on a selection of flux surfaces with
noble irrational rotational-transform. These surfaces are
likely to be most robust to chaos. A sensitive technique is
employed~Greene’s residue criterion! to determine if a cho-
sen surface persists or has been destroyed by perturbation.
The construction of each surface employs a method that ex-
plicitly locates a surface with desired rotational-transform,
without numerically calculating the rotational-transform by
field line following.

The rotational-transformi– is defined as the limit

i–5 lim
Dz→`

Du

Dz
, ~1!

whereu is an arbitrary poloidal angle coordinate. This limit
exists if, for any given positived, there exists aDzd such
that for allDz.Dzd , uDu/Dz2 i– u,d. For a chaotic trajec-
tory, it is not clear that this limit exists. A given chaotic field
line may spend an arbitrarily long time in a certain region of
space with a certain average transform, then squeeze through
a partial barrier~cantori! into a different region with a dif-
ferent average transform. An appeal to the ergodic theorem,
where the ‘‘time’’ average is equal to the accessible phase
space average, may provide some relief, but for practical
purposes in which a field line cannot be followed an ‘‘infi-
nite’’ distance~about 1010 transits in Ref. 16!, and consider-
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ing the complex structure of chaotic fields, any practical
measurement of the rotational-transform will be unreliable in
chaotic regions. Furthermore, in chaotic regions, nearby tra-
jectories will diverge exponentially at a rate characterized by
the Lyapunov exponent.3 It is likely that any finite approxi-
mation to the rotational-transform limit will be a non-
monotonic function of position in the chaotic region. In regu-
lar regions of space occupied predominately with flux
surfaces, the situation is different. On KAM surfaces, the
limit will converge to arbitrary accuracy if the field line is
followed a sufficient distance and efficient methods for cal-
culating the transform exist.17–19 Finally, for periodic field
lines, which close after a finite number of transits, the
rotational-transform can be determined exactly after follow-
ing the field line a finite distance.

The outline of this article is as follows. Section II will
describe the theoretical and numerical tools that will be ap-
plied. In particular, the representation of magnetic field line
flow as a mapping, the tangent mapping, stellarator symme-
try, and the continued fraction representation will be briefly
described. Also, Greene’s criterion for determining the exis-
tence of a given irrational surface is described. Section III
will present a selection of an ‘‘optimal’’ set of surfaces by
choosing the rotational-transform. In Sec. IV, the existence
of each selected surface is determined using Greene’s crite-
rion, and in Sec. V an explicit construction of an invariant
surface is presented. Having~i! selected,~ii ! determined the
existence of, and~iii ! constructed a suitable set of invariant
surfaces, magnetic coordinates are then obtained in Sec. VI.
By selecting the most-irrational surfaces, the magnetic coor-
dinates thus constructed are likely to be those most robust to
chaos. Finally, some comments are given in Sec. VII.

II. PRELIMINARIES

Straight-field-line coordinates are determined by the
magnetic field. This article will consider the magnetic field to
be given numerically in the form

B5Br~r,u,f!er1Bu~r,u,f!eu1Bf~r,u,f!ef , ~2!

where~r, u, f! form a toroidal coordinate system,er5]rx,
eu5]ux, andef5]fx, wherex is the position vector andBf

is nowhere zero in the region of interest. This article will
consider fields that are consistent with stellarator
symmetry.20 The magnetic field and coordinates are stellar-
ator symmetric if

Br~r,u,f!52Br~r,2u,2f!,

Bu~r,u,f!5Bu~r,2u,2f!, ~3!

Bz~r,u,f!5Bz~r,2u,2f!.

It follows that if $r~f!, u~f!% is a field line then so also
is $r(2f),2u(2f)%. Stellarator symmetry is equivalent to
time-reversal symmetry in dynamical systems.

A field line is determined by numerically integrating

dr

df
5 ṙ~r,u,f!5

Br

Bf , ~4!

du

df
5 u̇~r,u,f!5

Bu

Bf , ~5!

from a given starting point. The magnetic field line flow
produces a mapping

S r̃

ũ D 5TS r
u D , ~6!

where the mappingT integrates the field lines over one tor-
oidal period from a given starting point, typically chosen on
a symmetry plane.

Periodic orbits serve as a useful framework for under-
standing chaotic fields and are defined as orbits that satisfy

r~f12pq/N!5r~f!, ~7!

u~f12pq/N!5u~f!12pp, ~8!

for integers (p,q) and whereN is the toroidal periodicity of
the device.

The search for symmetric periodic orbits is greatly sim-
plified for stellarator symmetric fields. By writing the map-
ping T as a product of involutions~which is possible for
stellarator symmetric fields; see Refs. 21, 3, and 22 for de-
tails!, it is only required to search for orbits that satisfy

u~f1pq/N!5u~f!1pp ~9!

on theu50 line. Such symmetric periodic orbits are located
via a one-dimensional search~note that derivative informa-
tion is available from the tangent map described below!. This
halves the computational effort and affords greater numerical
accuracy.

The behavior of orbits near a given orbit is described by
the tangent map3

S dr̃

dũ D 5M S dr
du D , ~10!

whereM is defined

M5S ]rr̃, ]ur̃

]rũ, ]uũ
D , ~11!

and is determined by field line integration

dM

df
5S ]rṙ, ]uṙ

]ru̇, ]uu̇
D M . ~12!

The full-period tangent mappingMq at a periodic orbit de-
termines the stability of the orbit.3 If the eigenvalues ofMq

are complex conjugates, the tangent orbits will display ellip-
tical motion under the mapping near the periodic orbit and
that periodic orbit is considered stable. If the eigenvalues are
real reciprocals, the tangent motion will either exponentially
grow or decay and the periodic orbit is unstable.

Greene21 suggested that the existence of a given irratio-
nal KAM surface is related to the stability of neighboring
periodic orbits—in particular the periodic orbits that ‘‘best
approximate’’ the irrational. The term ‘‘best approximate’’ is
made clear using the continued fraction representation of the
real numbers. Any real numberi– may be expressed as
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i–5a01
1

a11
1

a21
1

a31¯

5@a0 ,a1 ,a2 ,a3 , . . . #, ~13!

where the integersam are called the partial quotients. The
continued fraction representation is described in detail by
Niven.11 Some salient points are reproduced here for com-
pleteness: every irrational has a unique representation as an
infinite continued fraction; the sequence will terminate ifi–
is rational and will continue infinitely ifi– is irrational; the
rationalpm /qm5@a0 ,a1 ,a2 , . . . ,am# is called themth con-
vergent; the convergents form a sequence of consecutively
better approximates that are the ‘‘best’’ in the sense that if
u i–2a/bu,u i–2pm /qmu where a,b are integers, thenb
.qm ; and successive convergents bound the irrational
pm /qm, i–,pm11 /qm11 ~or pm11 /qm11, i–,pm /qm de-
pending onm). A real number is determined by the contin-
ued fraction representation byi–5a0 where a0 is defined
inductively by the partial quotients

an5an1
1

an11
. ~14!

The magnitude of the partial quotientsam indicates how
rapidly thepm /qm converge toi– . Irrationals with continued
fraction representations terminating in infinitely many 1’s,
@a0 , . . . ,am ,1,1,1, . . .#, are most difficult to approximate
with rationals, in the sense that higher order rationals are
required to achieve a given accuracy, and give meaning to
the expression ‘‘most-irrational.’’ Such irrationals are com-
monly called noble irrationals. The most noble irrational is
@1,1,1,1,1, . . .#, and by settingan5an11 in Eq. ~14!, this
value is determinedg5(11A5)/2. Interestingly, this num-
ber, called the golden mean, is the limiting ratio of the Fi-
bonacci series. There is a close relationship between the con-
tinued fraction representation and the Farey tree.23 The
continued fraction representation for a rational is unique with
the following exception

p/q5@a0 ,a1 , . . . ,am#5@a0 ,a1 , . . . ,am21,1#. ~15!

The idea of Greene’s method is that a given irrational
surface will exist if the sequence of convergents are stable.
Greene presented this method as a conjecture. It has none-
theless yielded impressive results and MacKay has discussed
the reliability of the assumptions.24 Greene considered a
quantity called the residue,R, which characterizes the stabil-
ity of a periodic orbit. It is defined by the tangent map evalu-
ated along the full periodic orbit by

R5
22Tr~Mq!

4
. ~16!

For the purposes of this article is it sufficient to note the
following. For a given periodic orbit, the residue is a func-
tion of the perturbation. If the residues of the convergents of
a given irrational approach zero, then that irrational surface
will exist. If, however, the residues become large, then that
irrational surface has been destroyed. The critical value is
R50.25: if the residues of the convergents approach 0.25

then the irrational surface is on the edge of destruction. By
criticality it is meant that the KAM surface is on the verge of
destruction. The behavior ofR at criticality is interesting
topic: for example, for the standard non-twist map,30 the resi-
due converges to a 6-cycle.22 Such matters are beyond the
scope of the present application and it is sufficient to deter-
mine if the residues are large or small compared to 0.25.

Considering the residue to be a function of the continued
fraction representation, at fixed perturbation, Greene noted
that

R~@a0 , . . . ,ai11, . . . ,aN# !.R~@a0 , . . . ,ai , . . . ,aN# !,
~17!

whereai5maxj(aj). Loosely speaking, rationals with smaller
partial quotients~described in this article are more-noble!
have smaller residue: the more-noble irrationals are more
robust to chaos. Also, Greene noted thatR→` as ai→`,
implying that there is a band of chaos associated with every
rational.

That the noble irrationals are most robust to perturbation
may be understood by noting that they are farthest from low-
order rationals and thus least likely to be destroyed by island
overlap—a mechanism for chaos suggested by Chirikov.25

Greene’s residue criterion gives a very sensitive and
clear criterion for determining the existence of an irrational
surface. Furthermore, it guides selection of the most suitable
surfaces to be used as a coordinate framework in Sec. III.
The residue has been applied in the context of magnetic field
line flow by Hanson and Cary.26,27

Not only does the residue criterion enable the existence
of a given irrational surface to be determined, it can also be
used to predict whetherany invariant irrational surface exists
in a given interval. In this context the residue criterion may
be used to identify and locate the invariant surface which
defines the boundary of a chaotic region.28 Such a surface
may be called the boundary surface. Consider the interval
@p0 /q0 ,p1 /q1#, where the rationalsp0 /q0 , p1 /q1 are
neighboring,p1q02p0q1561, and the mediantp/q5(p0

1p1)/(q01q1). By a criterion of Ref. 28, invariant surfaces
with rotational-transform in@p0 /q0 ,p1 /q1# ~are / are not!
likely to exist if the average residue (R(p0 ,q0)1R(p1 ,q1))/2 is
significantly~smaller/larger! than 0.25. By recursively subdi-
viding the interval using the mediant, and testing the~lower/
upper! subinterval for the existence of invariant surfaces, an
algorithm is devised that will ultimately lead to the invariant
surface with the~lowest/highest! rotational-transform in the
original interval. At each subdivision, the interval length is
reduced. Furthermore, as the rationalsp0 /q0 , p1 /q1 are
neighboring, the successive rationals have a natural connec-
tion to the convergents of nearby irrationals. This allows the
continued fraction representation of the boundary surface to
be deduced.28 Alternatively, the algorithm is terminated at
some point~perhaps when the periodic orbits become too
long and numerical accuracy becomes poor! and the locally
most robust irrational surface29 is given by (pn

1gpn11)/(qn1gqn11). This method for constructing the
boundary surface will be used in Sec. VI.

The model magnetic field used for this study is given as
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B5“r3“u1“fÃ“x~r,u,f!, ~18!

where the field line Hamiltonianx is given

x5r2/21kF1

2
cos~2u2f!1

1

3
cos~3u22f!G . ~19!

The equations governing the field line are then

ṙ52k@sin~2u2f!1sin~3u22f!#, ~20!

u̇5r. ~21!

This field is integrable, and~r, u, f! are action-angle coor-
dinates, if the perturbation parameterk is zero. In this case,
the rotational-transform profile isi–5r. For non-zerok,
‘‘primary’’ islands will form at thep1 /q151/2, p2 /q252/3
surfaces. Ask is increased, ‘‘secondary’’ islands will form at
all rationals on the Farey tree formed byp1 /q1 and p2 /q2

~see Ref. 23 for a description of the Farey tree!, chaotic
regions will develop and invariant surfaces will be destroyed.

A generally perturbed field will have a perturbation spec-
trum that is initially unknown. The model field presented
here has sufficient complexity to represent a generally per-
turbed chaotic field relevant for fusion confinement devices,
with the exception of reversed shear systems for which a
model non-twist map30 is required.

The remainder of this article will use these ideas~i! to
select,~ii ! to determine the existence of, and~iii ! to construct
an appropriate set of irrational surfaces. On these surfaces,
magnetic coordinates will be constructed.

III. SURFACE SELECTION

The selection of surfaces is somewhat arbitrary and may
be adapted to suit the particular application. In the construc-
tion of magnetic coordinates to be described in Sec. VI, it is
assumed that the chaotic field lines are associated with a few
low-order islands. We thus seek a selection of surfaces that
will maximize the region of straight-field-line coordinates—
that is, lie as close as possible to the chaotic regions of the
low-order islands—and that the selection is based on the
most robust irrational surfaces.

The non-uniqueness of the continued fraction represen-
tation of a rational is convenient for constructing sequences
of noble irrationals that converge from above and below any
given rational p/q5@a0 ,a1 , . . . ,am#. The sequences of
noble irrationals

i–5@a0 ,a1 , . . . ,am ,n,1,1,1, . . .#,
~22!

i–5@a0 ,a1 , . . . ,am21,1,n,1,1, . . .#,

will converge from above or below, depending on whetherm
is odd or even, top/q asn increases. The ‘‘nobility’’ of the
irrationals in these sequences decreases asn increases. Asn
increases, the location of the irrational surfaces will approach
the chaotic region near thep/q unstable orbit and at some
point will be engulfed by the associated chaos.

These two sequences alone may not provide sufficient
spatial resolution, but arbitrarily many such sequences, de-
fined by a fixed set of integers$n1 ,n2 , . . . ,nN%, may be
constructed

i–5@a0 , . . . ,am ,n,n1 ,n2 , . . . ,nN,1,1, . . .#,
~23!

i–5@a0 , . . . ,am21,1,n,n1 ,n2 , . . . ,nN,1,1, . . .#.

This is equivalent to appending an infinite sequence of 1’s to
the continued fraction representation of a rational. For fixed
$n1 ,n2 , . . . ,nN%, each such sequence will converge to the
rational p/q5@a0 ,a1 , . . . ,am# as n increases. Using such
sequences, an arbitrarily dense set of noble irrationals that
converge to a given rational can be constructed.

Without a priori knowledge of the perturbation spec-
trum, it cannot be pre-determined exactly which irrational
surfaces will survive perturbation. It cannot beguaranteed
that a given selection of irrational surfaces is the most robust
to perturbation, but the sequences as defined can beexpected
to be the most robust as they are based on the most noble
irrational KAM surfaces. This selection adaptively expands
to fill the region in which invariant tori exist and serves to
partition regions of chaos.

IV. SURFACE EXISTENCE

It is not necessary to pre-determine the existence of a
selected surface. One may proceed to directly construct the
surface and then determinea posteriori if that surface was
successfully constructed. However, the efficiency and reli-
ability of Greene’s method for determining the existence of
an irrational flux surface justifies the additional computa-
tional cost. In fact, as any numerical method for constructing
an invariant surface will fail if that invariant surface does not
exist, pre-determining the existence of a required surface
may save computational effort.

To illustrate the application of Greene’s residue criterion,
the critical perturbation is determined for the surface with
rotational-transform equal to the inverse golden meang21

5@0,1,1,1, . . .#. The convergents ofg21 are 1/2, 2/3, 3/5,
5/8, 8/13, 13/21, 21/34, 34/55, 55/89, 89/144, 144/233, 233/
377, 377/610, . . . . Thebehavior of the residue of the conver-
gents for three perturbation values—below, near, and above
criticality—is shown in Fig. 1.

For less-than-critical perturbation, the residues approach
zero. For near-critical perturbation, the residues approach
0.25; and for larger-than-critical perturbation, the residues
become large. For these three cases, detailed Poincare´ plots
Figs. 2, 3, and 4 confirm that the residue criterion predicts
the breakup of the surface. In each of the Poincare´ plots, the
location of the~89,144! periodic orbit is shown withn, the
~144,233! with h, the~233,377! with 3, and the~377,610! is
shown with1. If the invariant surface exists, it will be lo-
cated between successive convergents and thus lie between
the 3’s and the1’s. In Fig. 4, above criticality, this region
has become chaotic.

To illustrate that the more-noble irrationals are more ro-
bust to chaos, the critical perturbation for each of the irratio-
nals comprising the sequences given in Table I is determined.
For all these sequences, asn increases the irrationals con-
verge, either from above or below, to the limit rational. Asn
increases the ‘‘nobility’’ of the irrational decreases and it is
expected that the largern irrationals will be destroyed at
lower perturbation. These expectations are consistent with
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the numerical determination of the critical perturbation pa-
rameterk for each irrational, as shown in Fig. 5. This fractal
‘‘critical-function’’ has been studied by several authors for
the standard map~see, for example, Ref. 31!. For each irra-
tional, the residue of the first 13 convergents is calculated in
the application of Greene’s criterion.

To further illustrate the behavior, the critical perturbation
parameter for the following irrationals is determined:

i–5@0,1,1,n, j ,1,1,1,1, . . .#,
~24!

i–5@0,1,1,1,n, j ,1,1,1, . . .#,

where j is an arbitrary, fixed positive integer. These irratio-
nals converge to 1/2 and 2/3 asn increases. Sequences with
j .1 may be considered less-noble than the sequence with
j 51, and indeed the less-noble irrationals are destroyed at
lower perturbation as shown in Fig. 6. For this figure, the

FIG. 1. Residue below (k50.001 5701 . . . , solid line!, near (k
50.001 580 1. . . , dotted line!, and above (k50.001 5901 . . . , dashed
line! criticality for the g21 convergents.

FIG. 2. Poincare´ plot showing theg21 surface, and the periodic orbits
corresponding to its convergents, below criticality (k50.001 570 1. . . ).
The horizontal~angle! scale is@3.117, 3.166# and the vertical~radial! scale
is @0.63165, 0.63185#.

FIG. 3. Poincare´ plot showing theg21 surface, and the periodic orbits
corresponding to its convergents, near criticality (k50.001 580 1 . . . ). The
horizontal ~angle! scale is@3.117, 3.166# and the vertical~radial! scale is
@0.63165, 0.63185#.

FIG. 4. Poincare´ plot showing theg21 ‘‘surface,’’ and the periodic orbits
corresponding to its convergents, after destruction (k50.001 590 1. . . ):
horizontal ~angle! range5@3.117,3.166#, vertical ~radial! range
5@0.63165,0.63185#.
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critical perturbation parameters for irrational sequences of
the type given in Eq.~24! with j 51,5,10 are compared. Note
that the less-noble irrationals, that is those withj 55,10, are
interspersed among the most-noble irrationals; thus, at cer-
tain perturbation parameters, between two irrational surfaces
that are invariant, there are irrational surfaces that have been
destroyed. This highlights the perils of interpolating straight-
field-line coordinates between invariant surfaces.

V. SURFACE CONSTRUCTION

Given that the preferred surfaces have been identified,
and that their existence may be determined, a method to
construct a surface of prescribed irrational rotational-

transform will now be described. This construction is similar
to the method proposed by Dewar and Meiss,32 in that a
curve of prescribed transform is defined by minimizing the
difference between the curve and its own image under the
map. In this case, a Newton method is used to find the curve
that exactly coincides with its image, which is thus an invari-
ant curve. Newton methods for finding invariant surfaces
have also been used by Reiman and Pomphrey,33 but they did
not constrain the rotational-transform of the surface.

A continuous arbitrary trial curve is parametrized with a
poloidal anglea using a Fourier representation

r~a!5 (
m50

M

rm cos~ma!, ~25!

u~a!5a1 (
m51

M

um sin~ma!. ~26!

The parametera will be identified with the straight-field-line
poloidal coordinate. This curve may be considered as the
intersection of an invariant surface, with ‘‘action’’ coordinate
c and specified rotational-transformi– (c), with the plane
f50. The even representation~cosine series! of the radial
coordinater and the odd representation~sine series! of the
poloidal coordinateu ~in addition to the secular terma! is
consistent with the assumption of a stellarator symmetric
field and coordinates. This curve, and therefore the surface
defined by allowing the curve to flow with the magnetic
field, is invariant if it is mapped to itself under the field line
flow.

A discrete set of points (r i ,u i) is constructed equally
spaced ina,

TABLE I. Irrational sequences: the irrationals given by the continued frac-
tion representation converge to the limiting rational, from above or below, as
n→`.

Limit Continued fraction

1. (1/2)1 @0,1,1,n,1,1,1,1,1, . . .#
2. (5/9)2 @0,1,1,4,n,1,1,1,1, . . .#
3. (5/9)1 @0,1,1,3,1,n,1,1,1, . . .#
4. (4/7)2 @0,1,1,3,n,1,1,1,1, . . .#
5. (4/7)1 @0,1,1,2,1,n,1,1,1, . . .#
6. (7/12)2 @0,1,1,2,1,1,n,1,1, . . .#
7. (7/12)1 @0,1,1,2,2,n,1,1,1, . . .#
8. (3/5)2 @0,1,1,2,n,1,1,1,1, . . .#
9. (3/5)1 @0,1,1,1,1,n,1,1,1, . . .#
10. (8/13)2 @0,1,1,1,1,2,n,1,1, . . .#
11. (8/13)1 @0,1,1,1,1,1,1,n,1, . . .#
12. (5/8)2 @0,1,1,1,1,1,n,1,1, . . .#
13. (5/8)1 @0,1,1,1,2,n,1,1,1, . . .#
14. (7/11)2 @0,1,1,1,2,1,n,1,1, . . .#
15. (7/11)1 @0,1,1,1,3,n,1,1,1, . . .#
16. (2/3)2 @0,1,1,1,n,1,1,1,1, . . .#

FIG. 5. Critical perturbation parameter,k, for destruction of invariant sur-
faces, with irrational rotational-transform given in Table I, plotted against
the rotational-transform. The vertical scale is 1023.

FIG. 6. Critical perturbation parameter,k, for destruction of invariant sur-
faces, with irrational rotational-transform given in Eq.~24!, plotted against
the rotational-transform. Irrationals defined by the sequence withj 51 are
shown with ‘‘1,’’ for j 55 with ‘‘ 3,’’ and for j 510 with ‘‘2.’’ The vertical
scale is 1023.
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$aua i52p i /N,i 50,N21%, ~27!

and is mapped to (r̃ i ,ũ i) by T.
By requiring the trial curve to be invariant under the

rigid rotation map (c,a)°(c,a12p i– ), the discrete set of
points (r i ,u i) maps to

r̄ i5 (
m50

M

rm cos@m~a i12p i– !#, ~28!

ū i5~a12p i– !1 (
m51

M

um sin@m~a i12p i– !#. ~29!

Constructing the ‘‘error’’ vectorf5$r̄ i2 r̃ i ,ū i2 ũ i%, which
has length 2N, to be a function ofx5$rm ,um%, which has
length 2M11, a Newton correction for the invariant curve is
found by solving fordx,

05f~x!1df"dx. ~30!

The derivative matrixdf is provided by the tangent map

]rm
~ r̄ i2 r̃ i !5]rm

r̄ i2]rr̃ i]rm
r, ~31!

]um
~ r̄ i2 r̃ i !52]ur̃ i]um

u, ~32!

]rm
~ ū i2 ũ i !52]rũ i]rm

r, ~33!

]um
~ ū i2 ũ i !5]um

ū i2]uũ i]um
u, ~34!

and is inverted using singular value decomposition~SVD!.34

By choosing 2N to be greater than 2M11, the SVD
method will minimizeu f u, whether the surface indeed exists
or not. The iterations are terminated whenudxu is smaller
than some prescribed tolerance. With Newton methods, it is
required to provide an initial guess for the iterations. This
may be provided by knowledge of the rotational-transform
profile. Alternatively, the location of the convergents will
approximate the irrational curve.

A Fourier decomposition of the entire surface in straight-
field-line coordinates is immediately possible by allowing
the invariant curve to flow along the field one period. This
point will be expanded in the following section.

The accuracy to which the invariant surface is con-
structed is dependent on the resolution of the Fourier repre-
sentation. A convenient way to determine if sufficiently
many harmonics have been used is to confirm that the Fou-
rier representation of the invariant surface lies between the
convergent periodic orbits. If not, then though the invariant
surface may indeed exist, insufficient Fourier resolution has
been used. Other methods to establish the surface have been
successfully constructed include confirming thatu f u is close
to zero, that the Fourier modes decay sufficiently rapidly
compared toM , and that the measured rotational-transform
of a field line on the surface agrees with the prescribed value.

VI. STRAIGHT FIELD LINE COORDINATES

The necessary ingredients for a robust construction of
magnetic coordinates are now prepared. In this section, it
will be assumed that the chaotic trajectories arise near a few

low-order periodic orbits. Sequences of noble-irrationals of
the type given in Eq.~22! will be used to select which sur-
faces will be used.

Straight-field-line coordinates can only be constructed
on invariant surfaces. The coordinates may be interpolated,
but between invariant surfaces there will, in general, be an
island chain and associated band of chaos and the interpo-
lated coordinates will not be straight-field-line coordinates.
For low-order rationals, the width of the region contained by
islands and chaos may be significant. For high-order rational
surfaces, the chaotic region may become vanishingly small.
In this case, the interpolated coordinates, to a sufficient ap-
proximation, may be deemed to be straight-field-line coordi-
nates.

A selection of noble-irrational surfaces converging to
~2/3! from below asn increases

i–5@0,1,1,1,n,1,1,1,1, . . .# ~35!

is used to construct magnetic coordinates and these are
shown in Fig. 7. For this figure, only the region near the~2/3!
unstable periodic orbit is shown. In the left side of this fig-
ure, the surfaces that are deemed to exist~that have conver-
gents with residue approaching zero! are constructed and
plotted with solid lines, and for such surfaces the straight-
field-line angle grid is shown. Asn increases, the surfaces
approach the chaotic region and for somen will be de-
stroyed. The last surface of this sequence that is deemed to
exist has rotational transformi–50.656 820 494 002 992 20
5@0,1,1,1,10,1,1,1, . . .#.

The boundary surface is not required to be a member of
this sequence. The algorithm for locating boundary surfaces
is applied to the interval defined by the rationalsp0 /q0

521/325@0,1,1,1,10# and p1 /q152/35@0,1,1,1#. After 10
subdivisions of this interval, the invariant surface that is

FIG. 7. Magnetic coordinates~left!, boundary surface and Poincare´ plot near
unstable~2, 3! periodic orbit: horizontal~angle! range5@0.963,1.131#, ver-
tical ~radial! range5@0.662,0.665#.
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closest to the~2/3! chaotic region is determined to have ro-
tational transform i–50.656 965 744 152 842 40
5@0,1,1,1,10,1,3,1,2,3,1,1,1, . . .#. This is also shown with a
solid line on the left side of the figure. To distinguish this
surface, the angle coordinate grid is not extended to this
surface.

On all the invariant surfaces, a field line is followed by
5000 toroidal periods and is plotted on both sides of the
figure. These orbits coincide with the invariant surfaces. Also
shown are some orbits in the chaotic region to illustrate the
stochastic region. In this application,M5100 Fourier modes
were used to describe the surfaces and the perturbation pa-
rameterk50.531023. In determining the surfaces, the total
number of T evaluations is approximately 5N, where N
.(2M11), and thus the method is computationally com-
petitive with field line tracing methods.

The global nature of the magnetic coordinates is dis-
played in Fig. 8. For this construction, sequences of noble
irrationals approaching~1/2! and ~2/3! as n increases were
used as the coordinate framework

i–5@0,2,n,1,1,1,1, . . .#, ~36!

i–5@0,1,1,n,1,1,1,1, . . .#, ~37!

i–5@0,1,2,n,1,1,1,1, . . .#, ~38!

i–5@0,1,1,1,n,1,1,1,1, . . .#. ~39!

Note that this selection will not resolve higher order islands
lying between these two low order rationals, the largest of
which is the~3/5! island. Surfaces were deemed to be de-
stroyed if either the residues of the convergents did not be-
come small or the Fourier representation of the surface,
whereM550 Fourier modes were used, did not lie between
successive convergents. On the left of this figure the coordi-
nate grid is shown. On both sides, Poincare´ plots show the

field lines that have been started on the invariant surfaces and
near the unstable~1/2! and~2/3! periodic orbits. Also shown
is a field line starting near the unstable~3/5! periodic orbit.
This orbit traces out the slightly chaotic~3/5! separatrix and
indicates the width of the~3/5! island. The magnitude of the
perturbation parameterk50.7531023. A similar display of
the coordinates, fork51.0031023, is displayed in Fig. 9.
For this case, in addition to the~1/2! and ~2/3! islands, the
~3/5! island is resolved and the separatrices of the~4/7! and
~5/8! islands are shown. In principle, as many islands as de-
sired may be resolved; ultimately leading to coordinates dis-
playing the fractal nature displayed in Fig. 5.

The extension of the coordinates from thef50 plane to
the three-dimensional volume is achieved by defining the
straight field line angleu0 along each of the field lines se-
lected in Eq.~27! as

u05a1 i–f. ~40!

Each surface may then be represented as a function of the
(u0 ,f) coordinates, and interpolation between the surfaces
enables a coordinate transformation

r5r~c,u0 ,f!, ~41!

u5u~c,u0 ,f!, ~42!

wherec is a convenient flux surface label~perhaps the tor-
oidal flux enclosed! and the magnetic field may be written

B5Bcec1Bu0eu0
1Bfef . ~43!

On the invariant surfacesBc50 and by using“"B50, the
magnetic field may be written in the straight-field-line form

B5“cÃ“u01 i–~c!“fÃ“c. ~44!

FIG. 8. Magnetic coordinates~left! and Poincare´ plot: horizontal ~angle!
range5@0,2p#, vertical ~radial! range5@0.440,0.715#.

FIG. 9. Magnetic coordinates and Poincare´ plot: horizontal~angle! range
5@0,2p#, vertical ~radial! range5@0.440,0.715#.
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Finally, if an alternative toroidal angle is desired~to simplify
the representation of the magnetic field or impose a desired
Jacobian! f→f1df(c,u0 ,f), then the straight-field-line
poloidal angle becomesu0→u01 i–df.

VII. COMMENTS

In many applications, the location of a selected irrational
surface may be estimated from the location of the conver-
gents. This estimate may be sufficient for field line following
techniques to determine the magnetic surface or interest.
Even if the surface located does not have exactly the selected
rotational-transform, a small error may be tolerable as this
region of space is likely to be filled with flux surfaces.

Incorporated into an iterative procedure,12 this construc-
tion of magnetic coordinates presented has the advantage
that the ‘‘same’’ surface, as defined by the value of the
rotational-transform, will be constructed at each iteration.
This may have benefits for numerical stability, particularly
near where singularities~in the parallel current! exist. Also, a
good initial guess for the trial curve may be provided by the
previous iteration.

If the @a0 ,a111#,@a0 ,a1# islands are large, then it is
likely a significant@a0 ,a1,2# island will form. It is possible
to overlook this island. Techniques for determining island
width, such as the method described in Ref. 27, may be
employed to determine if an overlooked island has signifi-
cant width.

The selection of surfaces assumes some knowledge of
the rotational-transform profile, perhaps from the nearby in-
tegrable field~or from a previous iteration!. If insufficient
information about the profile is known, some field line trac-
ing may be necessary to obtain an estimate profile. If the
rotational-transform profile is not monotonic, the mapping
becomes a non-twist map.

If the field is not stellarator symmetric, all of the above
ideas are applicable with the following modifications:~i! the
search for periodic orbits becomes a two-dimensional search
and field lines must be followed the full periodic distance;
and ~ii ! the Fourier representation of the trial curve must
include all the sine and cosine terms. These modifications
add to the computational effort, but do not represent any
fundamental limitation of the procedure.
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